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ABSTRACT

In recent years, the Log Structured Merge (LSM) tree has
been widely adopted by NoSQL and NewSQL systems for
its superior write performance. Despite its popularity, how-
ever, most existing work has focused on LSM-based key-
value stores with only a single LSM-tree; auxiliary struc-
tures, which are critical for supporting ad-hoc queries, have
received much less attention. In this paper, we focus on
efficient data ingestion and query processing for general-
purpose LSM-based storage systems. We first propose and
evaluate a series of optimizations for efficient batched point
lookups, significantly improving the range of applicability
of LSM-based secondary indexes. We then present several
new and efficient maintenance strategies for LSM-based stor-
age systems. Finally, we have implemented and experimen-
tally evaluated the proposed techniques in the context of the
Apache AsterixDB system, and we present the results here.
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1. INTRODUCTION

A wide range of applications, such as risk management,
online recommendations, and location-based advertising, de-
mand the capability of performing real-time analytics on
high-speed, continuously generated data coming from sources
such as social networks, mobile devices and IoT applications.
As a result, modern Big Data systems need to efficiently
support both fast data ingestion and real-time queries.

The Log-Structured Merge (LSM) tree [24] is a promising
structure to support write-intensive workloads. It has has
been widely adopted by NoSQL and NewSQL systems [2, 3,
4, 7, 10, 14] for its superior write performance. Instead of
updating data in-place, which can lead to expensive random
1/0s, LSM writes, including inserts, deletes and updates, are
first accumulated in memory and then subsequently flushed
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to disk and later merged using sequential I/Os. A number
of improvements have been proposed to optimize various
aspects of the original LSM proposal [8, 16, 17, 28, 34].

Auxiliary structures, such as secondary indexes, are criti-
cal to enable the efficient processing of ad-hoc queries. Two
types of LSM-based auxiliary structures have been used in
practice to facilitate query processing, namely secondary in-
dexes and filters. A secondary index is an LSM-tree that
maps secondary key values to their corresponding primary
keys. A filter, such as a Bloom filter [13] or a range filter [11]
on secondary keys, is directly built into LSM-trees to enable
data skipping for faster scans. While needed for queries,
maintaining these structures during data ingestion comes
with extra cost. Especially in the case of updates, both
types of structures require accessing old records so that they
can be properly maintained. Existing LSM-based systems,
such as AsterixDB [1, 9], MyRocks [5], and Phoenix [6], em-
ploy an eager strategy to maintain auxiliary structures by
prefacing each incoming write with a point lookup. This
strategy is straightforward to implement and optimizes for
query performance since auxiliary structures are always up-
to-date. However, it leads to significant overhead during
ingestion because of the point lookups.

An outage with respect to the general-purpose use of LSM
indexing is that no particularly efficient point lookup algo-
rithms have been proposed for the efficient fetching of the
records identified by a secondary index search. While sort-
ing fetch lists based on primary keys is a well-known opti-
mization [19], performing the subsequent point lookups in-
dependently still incurs high overhead. This limits the range
of applicability of LSM-based secondary indexes, requiring
the query optimizer to maintain accurate statistics to make
correct decisions for processing ad-hoc queries efficiently.

This paper focuses on efficient data ingestion and query
processing techniques for general-purpose LSM-based stor-
age systems. The first contribution of this paper is to pro-
pose and evaluate a series of optimizations for efficient index-
to-index navigation for LSM-based indexes. We show how
to leverage the internal structure of LSM to efficiently pro-
cess a large number of point lookups. We further conduct
a detailed empirical analysis to evaluate the effectiveness of
these optimizations. The experimental results show that the
proposed optimizations greatly improve the range of applica-
bility of LSM-based secondary indexes. Even with relatively
large selectivities, such as 10 - 20%, LSM-based secondary
indexes can still provide performance better than or (worst
case) comparable to that of a full scan.



The second contribution of this paper is to study alterna-
tive maintenance strategies for LSM-based auxiliary struc-
tures. The key insight here is the applicability of a primary
key index, which only stores primary keys, for use in index
maintenance. For secondary indexes, we present a validation
strategy that cleans up obsolete entries lazily using a pri-
mary key index. For filters, we introduce a mutable-bitmap
strategy that allows deleted keys to be directly reflected for
immutable data through mutable bitmaps by accessing pri-
mary keys instead of full records. Since primary keys are
much smaller than full records, we show that the exploita-
tion of a primary key index can greatly reduce required 1/Os
and significantly increase the overall ingestion throughput.

Finally, we have implemented all of the proposed tech-
niques inside Apache AsterixDB [1, 9], an open-source LSM-
based Big Data Management System. We have conducted
extensive experiments to evaluate their impacts on ingestion
performance and query performance.

The remainder of the paper is organized as follows: Sec-
tion 2 provides background information and surveys the re-
lated work. Section 3 presents a general architecture for
LSM-based storage systems and introduces various optimiza-
tions for efficient point lookups. Sections 4 and 5 describe
in detail the proposed Validation strategy and the Mutable-
bitmap strategy. Section 6 experimentally evaluates the pro-
posed techniques. Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1 Log-Structured Merge Trees

The LSM-tree [24] is a persistent index structure opti-
mized for write-intensive workloads. In LSM, writes are first
buffered into a memory component and then flushed to disk
using sequential I/Os when memory is full. Each flush oper-
ation forms a new disk component. Once flushed, LSM disk
components are immutable. Modifications (inserts, updates
and deletes) are therefore handled by inserting new entries
into memory. An insert or update simply adds a new en-
try with the same key, while a delete adds an “anti-matter”
entry [10] indicating that a key has been deleted.

A query over LSM data has to reconcile the entries with
identical keys from multiple components, as entries from the
newer components override those from older components.
As disk components accumulate, query performance tends
to degrade since more components must be examined. To
counter this, disk components are gradually merged accord-
ing to a pre-defined merge policy. In general, two types of
merge policies are used in practice [16, 17], both of which
organize components into “levels”. The leveling merge pol-
icy maintains one component per level, and a component in
a higher level will be exponentially larger than that of the
next lower one. In contrast, the tiering merge policy main-
tains multiple components per level; these components are
formed when a series of lower-level components are merged
together using a merge operation.

2.2 Apache AsterixDB

Apache AsterixDB [9] is a parallel, semistructured Big
Data Management System (BDMS) that aims to support
ingesting, storing, indexing, querying and analyzing massive
amounts of data efficiently. Here we briefly discuss storage
management in AsterixDB [10], which relates to this paper.
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The records of a dataset in AsterixDB are hash-partitioned
based on their primary keys across multiple nodes. Each
partition of a dataset uses a primary LSM-based BT-tree
index to store the records. Secondary indexes, including
LSM-based BT -trees, R-trees, and inverted indexes, are lo-
cal to the primary index partition, as in most shared-nothing
parallel databases. The memory components of all the in-
dexes of a partition of a dataset share a memory budget,
and thus they are always flushed together. A primary index
entry is stored as the primary key plus the record, while a
secondary index entry is composed of the secondary key and
the associated primary key. Secondary index lookups are
routed to all dataset partitions to fetch the corresponding
primary keys. The returned primary keys are then sorted
locally before retrieving the records in the local partitions
in order to retrieve them in an efficient manner.

AsterixDB supports record-level transactions across mul-
tiple LSM indexes of a dataset to ensure that all secondary
indexes are consistent with the primary index. It utilizes
a no-steal/no-force buffer management policy with write-
ahead-logging (WAL) to ensure durability and atomicity.
For recovery and rollback, index-level logical logging and
component shadowing are employed. Rollback for in-memory
component changes is implemented by applying the inverse
operations of log records in the reverse order. To perform
crash recovery, committed transactions beyond the maxi-
mum LSN of disk components are replayed by examining
log records. No undo is performed during recovery since the
no-steal policy guarantees that disk components can only
contain committed transactions.

2.3 Related Work

A number of improvements of the original LSM-tree index
structure [24] have been proposed recently. bLSM [28] pre-
sented a spring-and-gear merge scheduler to reduce periodic
write stalls. cLSM [18] is optimized for multi-core machines
using non-blocking concurrency control mechanisms. Mon-
key [16] optimized the memory allocation of Bloom filters for
LSM-trees. Dostoevsky [17] presented a lazy-leveling merge
policy that can make better performance trade-offs. Wis-
cKey [21] separated values from keys to reduce write ampli-
fication. All of these efforts have been focused on improving
a single LSM index. Our work here is orthogonal to these
optimizations of LSM-trees since we focus on LSM-based
auxiliary structures.

DELI [31] presented a lazy secondary index maintenance
strategy by repairing secondary indexes during the merge of
primary index components. In addition to its eager strategy,
AsterixDB [10] supports a deleted-key B*-tree strategy that
attaches a BT-tree to each secondary index component that
records the deleted keys in this component. Since DELI and
the deleted-key BT -tree strategy are closely related to our
work, we will further discuss them in detail in Section 4.1.
Qadar et al. [26] conducted an experimental study of LSM-
based secondary indexes. However, their study did not con-
sider cleaning up secondary indexes in the case of updates.

Alsubaiee et al. [11] added the option of a range filter on
LSM-based primary and secondary indexes for the efficient
processing of time-correlated queries. Jia [20] exploited LSM
range filters to accelerate primary key lookups for append-
only and time-correlated workloads. However, the eager
strategy for maintaining filters incurs high lookup cost dur-
ing ingestion and reduces their pruning capabilities in the



presence of updates. Several commercial database systems
have similarly supported range filter-like structures, such as
zone maps in Oracle [35] and synopses in DB2 BLU [27], to
enable data skipping during scans. However, these systems
are not based on LSM-trees.

Several related write-optimized indexes [29, 32, 33] have
been proposed to efficiently index append-only observational
streams and time-series data. Though they provide high in-
gestion performance, updates and deletes are not supported.
Our work targets general workloads that include updates
and deletes as well as appends.

3. LSM STORAGE ARCHITECTURE

In this section, we present a general LSM-based storage
architecture that will be the foundation for the rest of this
paper. We also present the Eager strategy used in existing
systems as well as a series of optimizations for index-to-index
navigation given LSM-based indexes.

The storage architecture is depicted in Figure 1. Each
dataset has a primary index, a primary key index, and a set
of secondary indexes, which are all based on LSM-trees. All
indexes in a dataset share a common memory budget for
memory components, so they are always flushed together
(as in AsterixDB). Each component in the figure is labeled
with its component ID, which is represented as a pair of
timestamps (minTS - maxTS). The component ID is simply
maintained as the minimum and maximum timestamps of
the index entries stored in the component, where the times-
tamp is generated using the local wall clock time when a
record is ingested. Through component IDs, one can infer
the recency ordering among components of different indexes,
which can be useful for secondary index maintenance oper-
ations (as discussed later). For example, component IDs
indicate that component 1-15 of Secondary Index 1 is older
than component 16-18 of the primary index and that it over-
laps component 1-10 of the primary index.

The primary index stores the records indexed by their
primary keys. To reduce point lookups during data inges-
tion, as we will see later, we further build a primary key
index that stores primary keys only. Both of these indexes
internally use a Bt-tree to organize the data within each
component. Each primary or primary key disk component
also has a Bloom filter [13] on the stored primary keys to
speed up point lookups. A point lookup query can first check
the Bloom filter of a disk component and search the actual
BT -tree only when the Bloom filter reports that the key may
exist. Secondary indexes use a composition of the secondary
key and the primary key as their index key in order to effi-
ciently handle duplicate secondary keys. A secondary index

Range Filter [T1, T3]

. [T4,T5]  [Te, T7]

Bloom Filter — 1 [T8, T8]
Primary Index 1-10 11-15 16-18 19
Primary Key Index
Secondary Index 1 1-15 16-18
Secondary Index 2 A A

Disk Components ~ Memory Components

Figure 1: Storage Architecture
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query can first search the secondary index to return a list of
matching primary keys and then perform point lookups to
fetch records from the primary index.

In general, the primary index may have a set of filters for
efficient pruning during scans'. Without loss of generality,
we assume that each primary index component may have a
range filter that stores the minimum and maximum values
of the component’s secondary filter key (denoted as [T1i, Tj]
in Figure 1). During a scan, a component can be pruned if
its filter is disjoint with the search condition of a query.

3.1 Data Ingestion with the Eager Strategy

During data ingestion, all storage structures must be prop-
erly maintained. Here we briefly review the Eager strategy
commonly used by existing LSM-based systems such as As-
terixDB [1, 9], MyRocks [5], and Phoenix [6].

To insert a record, its key uniqueness is first checked by
performing a point lookup. As an optimization, the primary
key index can be searched instead for efficiency. If the given
primary key already exists, the record is ignored; otherwise,
the record is recorded in the memory components of all of
the dataset’s indexes. Any filters of the memory components
must be maintained based on the new record as well.

To delete a record given its key, a point lookup is first
performed to fetch the record. If the record does not exist,
the key is simply ignored. Otherwise, anti-matter entries
must be inserted into all of the dataset’s LSM indexes to
delete the record. Any filters of the memory components
must also be maintained based on the deleted record; other-
wise, a query could erroneously prune a memory component
and thus access deleted records.

To upsert a record, a point lookup is first performed to
locate the old record with the same key. If the old record
exists, anti-matter entires are generated to delete the old
record from all of the dataset’s secondary indexes. The new
record is then inserted into the memory components of all
of the dataset’s LSM indexes. As an optimization, if the
value of some secondary key did not change, the correspond-
ing secondary index can be simply skipped for maintenance.
Any filters of the memory components must be maintained
based on both the old record (if it exists) and the new record.

As a running example, consider the initial LSM indexes
depicted in Figure 2 for a UserLocation dataset with three
attributes: UserID (the primary key), Location, and Time.
The Location attribute stores the last known location of the
user (in terms of states) and the Time attribute stores the
time of the last known location (in terms of years). We have
a secondary index on Location and a range filter on Time.
Figure 3 shows the resulting LSM indexes after upserting
a new record (101, NY, 2018) with an existing key 101.
A point lookup is first performed to locate the old record
(101, CA, 2015). In addition to adding the new record to
all memory components, an anti-matter entry (-CA, 101) is
added to the secondary index to eliminate the obsolete entry
(which is dashed in the figure). Also, notice that the memory
component’s range filter is maintained based on both 2015
and 2018 so that future queries will properly see that the
old record with UserID 101 has been deleted.

We further use Figure 3’s example to illustrate how sec-
ondary indexes and filters are used in query processing. First

! As suggested by [11], secondary indexes could have filters
as well. However, in this paper we only focus on the use of
filters on the primary index to support efficient scans.
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Figure 3: Upsert Example with Eager Strategy

consider a query Q1 that finds all user records with Location
CA. Q1 first searches the secondary index to return a list of
UserIDs. In this example only UserID 102 is returned since
(CA, 101) is deleted by the anti-matter entry (-CA, 101).
The primary index is then searched to fetch the record using
UserID 102, which returns (102, CA, 2016). Note that with-
out the anti-matter entry, the obsolete UserID 101 would be
erroneously searched by Q1 as well. Consider another query
Q2 that finds all records with Time < 2017. Q2 scans the
primary index by first collecting a set of candidate compo-
nents whose range filters overlap with the search condition
Time < 2017. In this example, both components will be
scanned by Q2 and only one record (102, CA, 2016) is re-
turned. However, suppose that when upserting record (101,
NY, 2018), the range filter of the memory component had
only been maintained based on the new value 2018. In this
case, the memory component would have been pruned and
(101, CA, 2015) would be erroneously returned as well.

3.2 Efficient Index-to-index Navigation

Navigating from secondary indexes to the primary index
is a fundamental operation for query processing. Tradition-
ally, primary keys are sorted to ensure that the pages of the
primary index will be accessed sequentially [19]. Here we
discuss further optimizations to improve point lookup per-
formance for LSM-trees. Note that some of the optimiza-
tions below are not new. Our contribution is to evaluate
their effectiveness and integrate them to improve the range
of applicability of LSM-based secondary indexes.

Batched Point Lookup. Even though primary keys
are sorted, when searching multiple LSM components, it is
still possible that index pages will be fetched via random
I/Os since the sorted keys can be scattered across different
components. To avoid this, we propose here a batched point
lookup algorithm that works as follows: Sorted primary keys
are first divided into batches. For each batch, all of the
LSM components are accessed one by one, from newest to
oldest. Specifically, for each key in the current batch that
has not been found yet, it is searched against a primary
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component by first checking the Bloom filter and then the
Bt-tree. A given batch terminates either when all compo-
nents have been searched or all keys have been found. The
batch search algorithm ensures that components’ pages are
accessed sequentially, avoiding random 1/Os when fetching
their leaf pages. However, a downside is that the returned
data records will no longer still be ordered on primary keys.
We will experimentally evaluate this trade-off in Section 6.

Stateful BT-tree Lookup. To reduce the in-memory
BT-tree search overhead, a stateful search cursor that re-
members the search history from root to leaf can be used.
Instead of always traversing from the root, the cursor starts
from the last leaf page to reduce the tree traversal cost.
One can further use exponential search [12] instead of bi-
nary search to reduce the search cost within each page. To
search a key, this algorithm starts from the last search po-
sition and uses exponentially increasing steps to locate the
range which this key resides in. The key is then located by
performing a binary search within this range.

Blocked Bloom Filter. Finally, to reduce the overhead
of checking the components’ Bloom filters, a cache-friendly
approach called blocked Bloom filter [25] can be used. The
basic idea is to divide the bit space into fixed-length blocks
whose size is the same as the CPU cache line size. The first
hash function maps a key to a block, while the rest of the
hash functions perform the usual bit tests but within this
block. This ensures that each Bloom filter test will only lead
to one cache miss, at the cost of requiring an extra bit per
key to achieve the same false positive rate [25].

4. VALIDATION STRATEGY

In this section, we propose the Validation strategy for
maintaining secondary indexes efficiently. We first present
an overview followed by detailed discussions of this strategy.

4.1 Overview

In a primary LSM-tree, an update can blindly place a
new entry (with the identical key) into memory to mark
the old entry as obsolete. However, this mechanism does
not work with secondary indexes, as the index key could
change after an update. Similarly, one cannot efficiently de-
termine whether a given primary key is still valid based on
a secondary index alone, as entries in a secondary index are
ordered based on secondary keys. Extra work must be per-
formed to maintain secondary indexes during data ingestion.

The Eager strategy maintains secondary indexes by pro-
ducing anti-matter entries for each old record, which incurs
a large point lookup overhead during data ingestion. An al-
ternative strategy is to only insert new entries into secondary
indexes during data ingestion while cleanup obsolete entries
lazily so that the expensive point lookups can be avoided.
This design further ensures that secondary indexes can only
return false positives (obsolete primary keys) but not false
negatives, which simplifies query processing. Although the
idea of lazy maintenance is straightforward, two challenges
must be addressed: (1) how to support queries efficiently,
including both non-index-only and index-only queries; (2)
how to repair secondary indexes efficiently to cleanup obso-
lete entries while avoiding making cleanup a new bottleneck.

There have been several proposals for lazy secondary in-
dex maintenance on LSM-based storage systems. DELI [31]
maintains secondary indexes lazily, while merging the pri-
mary index components, without introducing any additional



structures. If multiple records with the same primary key
are encountered during a merge, DELI produces anti-matter
entries for obsolete records to clean up secondary indexes.
However, this design does not completely address the above
two challenges. First, non-index-only queries cannot be sup-
ported efficiently, as queries must fetch records to validate
the search results. Second, DELI lacks the flexibility to re-
pair secondary indexes efficiently. For update-heavy work-
load, it is desirable to repair secondary indexes more fre-
quently to improve query performance. However, in DELI
this requires constantly merging or scanning all components
of the primary index, incurring a high I/O cost.

To support index-only queries, extra structures on top
of secondary indexes should be maintained. AsterixDB sup-
ports a deleted-key BT -tree strategy that attaches a BT -tree
to each secondary index component that records the deleted
keys in this component. For index-only queries, validation
can be performed by searching these deleted-key B™-trees
without accessing full records. However, since these BT-
trees are duplicated for each secondary index, and no effi-
cient repairing algorithms have been described, cleaning up
secondary indexes incurs a high overhead during merges.

To address the aforementioned challenges, we choose to
use the primary key index to maintain all secondary indexes
efficiently. The primary key index can be used for validating
index-only queries by storing an extra timestamp for each
index entry in all secondary indexes as well as in the primary
key index. This timestamp is generated using the node-local
clock time when a record is ingested and is stored as an
integer with 8 bytes. We further propose an efficient index
repair algorithm based on the primary key index, greatly
reducing the I/O cost by avoiding accessing full records.

4.2 Data Ingestion

Under the Validation strategy, an insert is handled ex-
actly as in the Eager strategy except that timestamps are
added to the primary key index entries and secondary index
entries. To delete a record given its key, an anti-matter en-
try is simply inserted into both the primary index and the
primary key index. To upsert a record, the new record is
simply inserted into all of the dataset’s LSM indexes. (No-
tice that when deleting or upserting a record, the memory
component of the primary index has to be searched to find
the location for the entry being added. As an optimization,
then, if the old record happens to reside in the memory com-
ponent, it can be used to produce local anti-matter entries
to clean up the secondary indexes without additional cost.)

Consider the running example that began in Figure 2.
Figure 4 shows the resulting LSM indexes after upserting
the record (101, NY, 2018) under the Validation strategy.
The primary key index and the secondary index each now
contain an extra timestamp field (denoted as “ts”). To up-
sert the new record, we add the new record to all memory
components without any point lookups. As a result, the ob-
solete secondary index entry (CA, 101, ts1) still appears to
be valid even though it points to a deleted record. The Vali-
dation strategy can be naturally extended to support filters:
Since no pre-operation point lookup is performed, the filters
of the memory components are only maintained based on
new records. As in the example, then, the range filter is
only maintained based on 2018. As a result, a query that
accesses an older component has to access all newer compo-
nents in order not to miss any newer overriding updates.
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Figure 5: Query Validation Methods

4.3 Query Processing

In the Validation strategy, secondary indexes are not al-
ways guaranteed to be up-to-date and can thus return ob-
solete entries to queries. For correctness, queries have to
perform an extra validation step to ensure that only valid
keys are eventually accessed. Here we present two validation
method variations suitable for different queries (Figure 5).

The Direct Validation method (Figure 5a) directly per-
forms point lookups to fetch all of the candidate records
and re-checks the search condition. A sort-distinct step is
performed first to remove any duplicate primary keys. Af-
ter checking the search condition, only the valid records are
returned to the query. However, this method rules out the
possibility of supporting index-only queries efficiently.

To address these drawbacks, the Timestamp Validation
method (Figure 5b) uses the primary key index to perform
validation. A secondary index search returns the primary
keys plus their timestamps. Point lookups against the pri-
mary key index are then performed to validate the fetched
primary keys. Specifically, a key is invalid if the same key
exists in the primary key index but with a larger timestamp.
The valid keys are then used to fetch records if necessary.

Consider the example in Figure 4, and a query that wants
to find all records with Location CA. The secondary index
search returns primary keys with their timestamps (101, ts1)
and (102, ts2). Direct Validation performs point lookups to
locate records (101, NY, 2018) and (102, CA, 2016). The
first record will be filtered out because its Location is not
CA anymore. Timestamp Validation would perform a point
lookup against the primary key index to filter out UserID
101 since its timestamp tsl is older than ts4.

4.4 Secondary Index Repair

Since secondary indexes are not cleaned up during inges-
tion under the Validation strategy, obsolete entries could
accumulate and degrade query performance. To address



Disk Components Memory Components

Primary Key Index 1-10 11-18 19

Secondary Index 1-15 - 16-18 19

repairedTS: 15—19

Figure 6: Repaired Timestamp Example

Create search cursor on merging components
position < 0
while cursor.hasNext() do
entry < cursor.getNextEntry()
add entry to new component
add (pkey, ts, position) to sorter
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: sorter.sort()
10: for sorted entries (pkey, ts, position) do

11: validate pkey against primary key index
12: if pkey is invalid then
13: mark position of bitmap to 1

Figure 7: Pseudo Code for Merge Repair

this, we propose performing index repair operations in the
background to clean up obsolete index entries. Index repair
can either be performed during merge time, which we will
call merge repair, or scheduled independently from merges,
which we will call standalone repair.

The basic idea of index repair is to validate each primary
key in a component by searching the primary key index.
For efficiency, the primary keys in a given component of
a secondary index should only be validated against newly
ingested keys. To keep track of the repair progress, we as-
sociate a repaired timestamp (repairedTS) with each disk
component of a secondary index. During a repair operation,
all primary key index components with maxTS no larger
than the repairedTS can be pruned.? A repaired compo-
nent receives a new repairedTS computed as the maximum
timestamp of the unpruned primary key index components.
To clarify this, consider the example in Figure 6. Compo-
nent 1-15 of the secondary index has an initial repairedTS
of 15. To repair this component, we only need to search
components 11-18 and 19 of the primary key index, while
component 1-10 can be pruned. After the repair operation,
the new repairedTS of this component would be 19.

A naive implementation of merge repair would simply val-
idate each primary key by performing a point lookup against
the primary key index. For standalone repair, one could sim-
ply produce a new component with only valid entries with-
out merging. However, this implementation would be highly
inefficient because of the expensive random point lookups.

To handle this, we propose a more efficient merge repair
algorithm (Figure 7). The basic idea is to first sort the pri-
mary keys to improve point lookup performance, and further
use an immutable bitmap to avoid having to sort entries back
into secondary key order. The immutable bitmap of a disk
component indicates whether each of the component’s index
entries is (still) valid or not, and thus it stores one bit per
entry. Without loss of generality, we assume that a bit being
1 indicates that the corresponding index entry is invalid.

2This optimization applies to Timestamp Validation as well.
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Figure 8: Merge Repair Example

Initially, we create a scan cursor over all merging com-
ponents to obtain all valid index entries, i.e., entries where
their immutable bitmap bits are 0. These entries are directly
added to the new component (line 5). Meanwhile, the pri-
mary keys, with their timestamps and positions in the new
component, are streamed to a sorter (line 6). These sorted
primary keys are then validated by searching the primary
key index. As an optimization, if the number of primary
keys to be validated is larger than the number of recently
ingested keys in the primary key index, we can simply merge
scan the sorted primary keys and the primary key index. If
a key is found to be invalid, that is, if the same key exists
in the primary key index with a larger timestamp, we sim-
ply set the corresponding position of the new component’s
bitmap to 1 (lines 12-13). Standalone repair can be imple-
mented similarly, except that only a new bitmap is created.

To illustrate the immutable bitmap and the repair process,
consider the example secondary index in Figure 4. Suppose
we want to merge and repair all components of the secondary
index. The process is shown in Figure 8. The index entries
scanned from its old components are directly added to the
new component, and in the meanwhile they are sorted into
primary key order. The sorted primary keys are validated
using the primary key index. During validation, the key 101
with timestamp tsl is found to be invalid since the same
key exists with a larger timestamp ts4. This index entry has
ordinal position 1 (denoted “(1)” in the figure), so first bit
in the component’s bitmap is set to 1. Note that this invalid
entry will be physically removed during the next merge.

Bloom Filter Optimization. It is tempting to use
Bloom filters to further optimize the index repair operation.
The idea is that if the Bloom filters of the primary key index
components do not contain a key, which implies that the key
has not been updated, then the key can be excluded from
sorting and further validation. However, if implemented di-
rectly, this would provide little help since a dataset’s various
LSM-trees are merged independently. Consider the example
LSM indexes back in Figure 1. Suppose we want to merge
and repair the two disk components of Secondary Index 1.
Since the disk components of the primary key index have
already been merged into a single component beforehand,
its Bloom filter would always report positives, which would
provide no help and actually cause some extra overhead.

To maximize the effectiveness of the Bloom filter opti-
mization, one must ensure that during each repair opera-
tion the unpruned primary key index components are always
strictly newer than the keys in the repairing component(s).
For this purpose, we can use a correlated merge policy [11]
to synchronize the merge of all secondary indexes with the
primary key index in order to ensure that their components



are always merged together. Furthermore, all secondary in-
dexes must be repaired during every merge.

The Bloom filter optimization improves repair efficiency
and is thus suitable for update-heavy workloads that require
secondary indexes to be frequently repaired. However, for
workloads that contain few updates, it might be better to
just schedule repair operations during off-peak hours, and
thus the Bloom filter optimization may not be suitable. To
alleviate the tuning effort required from the end-user, we
also plan to develop auto-tuning techniques in the future.

S. MUTABLE-BITMAP STRATEGY

In this section, we present the Mutable-bitmap strategy
designed for maintaining a primary index with filters.

5.1 Overview

The key difficulty of applying filters to the LSM-tree is
its out-of-place update nature, that is, updates are added
to the new component. In the case of updates, the filter of
the new component must be maintained using old records
so that queries would not miss any new updates. The Ea-
ger strategy performs point lookups to maintain filters using
old records, incurring a high point lookup cost during data
ingestion. The Validation strategy skips point lookups but
requires queries to access all newer components for valida-
tion, halving the pruning capabilities of filters.

The Mutable-bitmap strategy presented below aims at
both maximizing the pruning capabilities of filters and re-
ducing the point lookup cost during data ingestion. The
first goal can be achieved if old records from disk compo-
nents can be deleted directly. However, if we were to place
new updates directly into the disk components where old
records are stored, a lot of complexity would be introduced
on concurrency control and recovery. Instead, our solution
is to add a mutable bitmap to each disk component to in-
dicate the validity of each entry using a very limited degree
of mutability. We present efficient solutions to address con-
currency control and recovery issues, exploiting the simple
semantics of mutable bitmaps, that is, writers only change
bits from 0 to 1 to mark records as deleted®. To minimize
the point lookup cost, the maintenance of mutable bitmaps
is performed by searching the primary key index instead of
accessing full records. To achieve this, we synchronize the
merges of the primary index and the primary key index using
the correlated merge policy (as in Section 4.4). An alterna-
tive implementation is to add a key-only BT -tree to each
primary index component, combining two indexes together.

5.2 Data Ingestion

For ease of discussion, let us first assume that there are
no concurrent flush and merge operations, the handling of
which are postponed to Section 5.3. An insert is handled
exactly as in the Eager/Validation strategy, and no bitmaps
are updated because no record is deleted. To delete a record
given its key, we first search the primary key index to locate
the position of the deleted key. If the key is found and
is in a disk component, then its corresponding bit in that
component’s bitmap is set (mutated) to 1. An anti-matter
key is also added to the memory component, for two reasons.
First, we view the mutable bitmap as an auxiliary structure
built on top of LSM that should not change the semantics

3 Aborts internally change bits from 1 to 0.
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of LSM itself. Second, if the Validation strategy is used
for secondary indexes, inserting anti-matter entries ensures
that validation can be performed with only recently ingested
keys. To upsert a record, the primary key index is first
searched to mark the old record as deleted if necessary, and
the new record is added to the index memory components.
Any filters of the memory components are only maintained
based on the new record, not the old one.

Consider the running example from Figure 2. Figure 9
shows the resulting LSM-trees after upserting a new record
(101, NY, 2018). The secondary index is not shown since
it can be maintained using either the Eager or Validation
strategy. In this case, the primary index and the primary
key index are synchronized and their components share a
mutable bitmap to indicate the validity of their records. To
upsert the new record, the primary key index is searched
to locate the position of the old record and the bitmap is
mutated to mark the old record as deleted. The range filter
of the memory component is maintained based only on the
new record, avoiding unnecessary widening based on 2015.

We now discuss concurrency control and recovery issues
for the mutable bitmaps. We assume that each writer ac-
quires an exclusive (X) lock on a primary key throughout
the (record-level) transaction. To prevent two writers from
modifying the same bitmap byte, one can use latching or
compare-and-swap instructions. For recovery, we use an
additional update bit in the log record for each delete or
upsert operation to indicate whether the key existed in a
disk component. To abort a transaction, if the update bit is
1, we simply perform a primary key index lookup (without
bitmaps) to unset the bit from 1 to 0. To unify the recovery
of bitmaps with LSM-trees, we use a no-steal and no-force
policy for bitmaps as well. A modified bitmap page is pinned
until the transaction terminates to prevent dirty pages from
being flushed. Regular checkpointing can be performed to
flush dirty pages of bitmaps. Upon recovery, committed
transactions are simply replayed to bring bitmaps up-to-date
based on the last checkpointed LSN. Again, a log record is
replayed on the bitmaps only when its update bit is 1.

5.3 Concurrency Control for Flush/Merge

Mutable bitmaps introduce concurrency control issues for
flush and merge operations. This is because concurrent writ-
ers may need to modify the bitmaps of the components that
are being formed by flush or merge operations. This prob-
lem bears some similarities with previous work on online
index construction [23, 30], which builds new indexes con-
currently with updates. Here we propose two concurrency
control methods that differ in how new updates are applied.
Due to space limitations, we only sketch the basic idea of
the proposed methods, leaving their details to [22].



In the Lock method, new updates are directly applied to
the new component. The component builder, which builds
the new component during a flush or merge operation, keeps
tracks of the progress of scanned keys. If a key to be deleted
was already scanned by the component builder, then the
delete is applied to the new component directly; otherwise,
it is only applied to the old component, which will then be
ignored by the component builder. To avoid accessing the
same key, the component builder has to acquire a shared
lock on each scanned key. The Side-file method avoids this
locking overhead by buffering the new updates in a side-
file and applying them after the new component has been
fully built. To avoid interference from concurrent updates,
the component builder has to create snapshots of mutable
bitmaps at the beginning of a flush or merge operation.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed techniques in
the context of Apache AsterixDB [1]. We are primarily in-
terested in evaluating the effectiveness of the various point
lookup optimizations (Section 6.2) and the ingestion and
query performance of the Eager, Validation, and Mutable-
bitmap strategies discussed in this paper (Sections 6.3 -
6.4). We also evaluate the proposed secondary index repair
method in detail (Section 6.5). See [22] for the additional
evaluation of the two proposed concurrency control methods
for the Mutable-bitmap strategy.

6.1 Experimental Setup

Since our work focuses on a partitioned database architec-
ture, all experiments were performed on a single node with a
single dataset partition. The overall performance of multiple
partitions generally achieves near-linear speedup since both
data ingestion and query processing are performed at each
partition locally. The node has a 4-core AMD Opteron 2212
2.0GHZ CPU, 8GB of memory, and two 7200 rpm SATA
hard disks. We used one disk for transactional logging and
one for the LSM storage. We allocated 5GB of memory for
the AsterixDB instance. Within that allocation, the disk
buffer cache size is set at 2GB, and each dataset is given
a 128MB budget for its memory components. Each LSM-
tree has two memory components to minimize stalls during
a flush. We used a tiering merge policy with a size ratio of
1.2 throughout the experiments, similar to the one used in
other systems [2, 3]. This policy merges a sequence of com-
ponents when the total size of the younger components is
1.2 times larger than that of the oldest component in the se-
quence. We set the maximum mergeable component size at
1GB to simulate the effect of disk components accumulating
within each experiment period. Each LSM-tree is merged in-
dependently. The Bloom filter false positive rate setting is
1% and the data page size is set at 128KB to accommodate
sequential I/Os. Finally, whenever a scan is performed, a
4MB read-ahead size is used to minimize random I/Os. To
verify the applicability of the proposed techniques on SSDs,
we repeated some key experiments on a node with 4-core
Intel i7 2.70GHZ CPU, 16GB memory, and a 500GB SSD.
All configurations on the SSD node were the same, except
that the buffer cache size is set to 4GB and disk page size
is reduced to 32KB.

For the experimental workload, although YCSB [15] is
a popular benchmark for key-value store systems, it is not
suitable for our evaluation since it does not have secondary
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keys nor secondary index queries. As a result, we imple-
mented a synthetic tweet generator for our evaluation, as in
other LSM secondary indexing work [10, 26]. Each tweet
has several attributes such as ID, message_text, user-id, lo-
cation, and creation_time etc., and its size is about 500 bytes
with variations due to the variable length (450 to 550 bytes)
of the randomly generated tweet messages. Among these
attributes, the following three are related to our evaluation.
First, each tweet has an ID as its primary key, which is a
randomly generated 64-bit integer. Second, the user_id at-
tribute, which is a randomly generated integer in the range
0 to 100K, is used for formulating secondary index queries
with various controlled selectivities. Finally, each tweet has
a creation_time attribute, which is a monotonically increas-
ing timestamp used to test the range filter.

6.2 Point Lookup Optimizations

We first studied the effectiveness of the point lookup op-
timizations discussed in Section 3.2. To this end, we per-
formed a detailed experimental analysis as follows: On top of
a naive lookup implementation (denoted as “naive”) which
only sorts the primary keys, we enabled the batched point
lookup with a batch size of 16MB (denoted as “batch”),
stateful B*-tree lookup (denoted as “sLookup”), and blocked
Bloom filter (denoted as “bBF”) optimizations one by one.
We also studied another optimization proposed by Jia [20]
(denoted as “pID”). Its basic idea is to propagate and use
the component IDs of the secondary index components in
which keys are found to prune primary index components
during point lookups?.

To prepare the experiment dataset, we inserted 80 million
tweet records with no updates. The resulting primary index
has about 30GB of data and 20 disk components, while the
secondary index on the user_id attribute only has 3GB of
data and less than 10 disk components. We then evaluated
the query performance for different controlled selectivities
based on the user_id attribute. For each query selectivity,
queries with different range predicates were executed until
the cache was warmed and the average stable running time
is reported. The running time of different selectivities is re-
ported in Figures 10a and 10b. For low query selectivities
(Figure 10a), which select a small number of records, batch-
ing slightly improves query performance by reducing random
1/0s, while other optimizations are less effective since the
query time is dominated by disk I/Os. For high query se-
lectivities (Figure 10b), we also included the full scan time
as a baseline. The upper line, at about 750s, represents the
full scan time on the experimental dataset. Since disk read-
ahead caused long 1/O wait times, we further evaluated an
optimized case on a dataset prepared with sequential pri-
mary keys (lower line). In that case, sequential 1/Os and
the OS’s asynchronous read-ahead were fully exploited to
minimize the I/O wait time. As the query selectivity in-
creases, the running time of the naive point lookup imple-
mentation grows quickly, since accessing multiple LSM com-
ponents leads to random I/Os. The batched point lookup is
the most effective at avoiding random I/Os. For large selec-
tivities, the stateful BT-tree lookup and blocked Bloom fil-
ter optimizations further reduce the in-memory search cost,

4Jia’s original technique actually propagated the ranges of
the range filter built on a time-correlated attribute; this is
equivalent to propagating component IDs in our setting.
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Figure 10: Effectiveness of Point Lookup Optimizations

since disk I/O cost is bounded as most pages must be ac- repairing secondary indexes become a new bottleneck, es-
cessed. Note that for large selectivities, a full scan starts pecially for a dataset with multiple secondary indexes? (3)
to outperform a secondary index search since most pages of What is the effectiveness of building a single primary key
the primary index must be accessed while a secondary in- index and the proposed repair algorithm (Section 4.4) for im-
dex search incurs the extra cost of accessing the secondary proving the ingestion throughput as compared to the deleted-
index and sorting primary keys. However, these optimiza- key BT-tree strategy supported by AsterixDB?
tions together greatly improved the range of applicability of To answer these questions, we used insert and upsert work-
LSM-based secondary indexes, allowing query optimizers, loads in the following evaluation. Delete workloads were
especially rule-based ones, to have more confidence when omitted since the cost of deletes would be similar to upserts;
choosing secondary indexes. Contrary to Jia [20], we found that is, an upsert is logically equivalent to a delete plus an
here that propagating component IDs provides little benefit. insert. Unless otherwise noted, each experiment below was
The reason is that Jia [20] considered an append-only tem- run for 6 hours with the goal being to ingest as much data
poral workload with hundreds of (filtered) LSM components as possible without concurrent queries. Each dataset has a
in a dataset, so the propagation of component IDs led to the primary index with a component-level range filter on the cre-
skipping of a large number of Bloom filter tests. However, in ation_time attribute, a primary key index, and a secondary
a more general setting, skipping a smaller number of Bloom index on the user_id attribute.
filter tests per key would not make so big a difference.

We further evaluated batched point lookup in terms of the 6.3.1 Insert Workload
available batching memory and sorting overhead. In each ex- For inserts, we evaluated two methods for enforcing key
periment that follows, stateful BT-tree lookup and blocked uniqueness, using either the primary index or the primary
Bloom filter were enabled by default. The running time key index. In the former case, the primary key index was
of different query selectivities under different batch sizes is omitted to eliminate its overhead. This workload was con-
shown in Figure 10c. For selective queries, a small batch size trolled by a duplicate ratio, which is the ratio of duplicates
such as 128KB already provides optimal performance since among all records. Duplicates were randomly generated fol-
a batch of keys are often distributed over a large number of lowing a uniform distribution over all the past keys.
pages; for non-selective queries, a few megabytes suffice to Figure 11 shows the insert throughput under different du-
provide optimal performance as well. Finally, we evaluated plicate ratios on both hard disks and SSDs. Note that the
the additional sorting overhead since batching destroys the experiment on hard disks was run for 12 hours so that even
primary key ordering of the final results. The running time the primary key index cannot be totally cached. As the
of different query selectivities is shown in Figure 10d. Even result shows, without the primary key index, ingestion per-
when sorting is performed, batching still improves the over- formance degraded quickly once the dataset could not be
all query performance. This is because the point lookup step totally cached; point lookups during ingestion incur a large
needs to fetch records distributed across a large number of overhead on both hard disks and SSDs. Building a pri-
pages, while the resulting records can often fit into a small mary key index greatly improves the ingestion throughput
number of pages and can be sorted efficiently. since the keys are much smaller and can be better cached

To summarize, batched point lookup is the most effective to reduce disk I/Os. Even though the ingestion through-
optimization for reducing random I/Os when accessing LSM put drops when the primary key index cannot be totally
components. Stateful B™-tree lookup and blocked Bloom cached, building a primary key index is still helpful by in-
filter are mainly effective for non-selective queries at further creasing the cache hit ratio. The duplicate-heavy workload
reducing the in-memory search cost. also results in a higher ingestion throughput when using the

primary key index since duplicate keys are simply excluded

6.3 Ingestlon Performance from insertion into the storage.

We next evaluated the ingestion performance of the dif-

ferent maintenance strategies, focusing on the following key 6.3.2  Upsert Workload

questions: (1) What is the effectiveness of building a pri- The upsert workload was controlled by an update ratio,
mary key index, which reduces the point lookup cost, for which is the ratio of updates (records with past ingested
improving the overall ingestion throughput, since maintain- keys) among total records. Updates are randomly gener-
ing the primary key index itself incurs extra cost? (2) Does ated by following either a uniform distribution, that is, all
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past keys are updated equally, or a Zipf distribution with mergeable component size to control the merge frequency.

a theta value 0.99 as in the YCSB benchmark [15], that is, The resulting ingestion throughput is shown in Figure 13a.

recently ingested keys are updated more frequently. Unless Except that more merges negatively impact the ingestion

otherwise specified, the update ratio was chosen as 10% and throughput of all strategies, point lookups still incur a large

the updates followed a uniform distribution. amount of overhead during data ingestion and the same rel-
For the Validation strategy, we evaluated two variations ative performance trends still hold.

to measure the overhead of repairing secondary indexes. In Ingestion Impact of Secondary Indexes. We also

the first variation, repair was totally disabled to maximize evaluated the scalability of the strategies by adding more

ingestion performance. In the second variation, merge re- secondary indexes. We excluded the Mutable-bitmap strat-

pair was enabled but without the Bloom filter optimization egy, since it is unaffected by secondary indexes, but in-

(Section 4.4) to evaluate the worse case repairing overhead. stead included the deleted-key BT -tree strategy for compari-

For the Mutable-bitmap strategy, the secondary index was son. Figure 13b shows the ingestion throughput for different

maintained using the Validation strategy without repair to numbers of secondary indexes. Maintaining more secondary

minimize the ingestion overhead due to secondary indexes. indexes negatively impacts the ingestion performance of all

The Side-file method was used for concurrency control to the strategies since more LSM-trees must be maintained. It

minimize the locking overhead. also has a larger impact on the Validation strategies. The
Basic Upsert Ingestion Performance. In this exper- reason is that the bottleneck of the Eager strategy lies in

iment, we compared the proposed Validation and Mutable- the point lookups, while for the Validation strategy, its bot-

bitmap strategies with the Eager strategy in terms of the tleneck is flushing and merging the LSM-trees. This impact

upsert ingestion performance under different update ratios, is more obvious after adding the fourth secondary index,

ranging from no updates to 50% updates following either since our experiment machine has four cores and more sec-

the uniform or Zipf distribution. The experimental results ondary indexes result in higher contention among all merge

are shown in Figure 12. The Eager strategy, which en- threads. The experiment also shows the scalability of the

sures that secondary indexes are always up-to-date, has the proposed index repair operations since it introduces just a

worst ingestion performance because of the point lookups to small overhead on data ingestion. Comparing to the cur-

maintain secondary indexes using the old records. On the rent AsterixDB deleted-key BT-tree strategy, the negative

other hand, the Validation strategy without repairing has impact of index repair operations has been greatly reduced

the best ingestion performance since secondary indexes are by using a single primary key index and the efficient repair

not cleaned up at all. The result also shows that repair- algorithm presented in Section 4.4.

ing secondary indexes incurs only a small amount of extra

overhead. Of course, since secondary indexes are not always 6.4 Query Performance

up-to-date, the Validation strategy sacrifices query perfor-
mance, which we will evaluate later in Section 6.4. The
Mutable-bitmap strategy also has much better ingestion per-
formance than the Eager strategy since it only searches the
primary key index instead of accessing full records. Up-
dates generally have a small impact on the overall ingestion
throughput, since updated records must be inserted into -©-eager  —A-validation (no repair)> mutable-bitmap
memory and subsequently flushed and merged (as for in- ¥ validation- deleted-key B+tree

serted records). The Eager and Mutable-bitmap strategies 154 % _

both benefit from skewed update workloads since most of
1 - -

the updates only touch recent keys, reducing disk I/O in-
0.5 T~
o—6——-6—9o|[6—e—o—5 3

We next evaluated the query performance of the differ-
ent maintenance strategies, focusing on the following two
aspects. First, we evaluated the overhead of the Validation

curred by the point lookups. These results again confirm
that it is helpful to build a primary key index to reduce the
point lookup cost.

Total Records (100 Millions)

Ingestion Impact of Merge Operations. In this set 0 IGB 4GB 16GB 64GB1 2 3 4 5
of experiments, we evaluated the impact of merge opera- (a) MaxMergeableComponentSize (b) Secondary Indexes
tions on upsert ingestion performance since more merges
can reduce the point lookup cost by reducing the number Figure 13: Impact of Merge Operations and Sec-
of components. To evaluate this, we varied the maximum ondary Indexes on Upsert Ingestion Performance
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Figure 14: Non-Index-Only Query Performance

strategy with both non-index-only and index-only queries
compared to the read-optimized Eager strategy and the ben-
efit of repairing secondary indexes. Second, we evaluated the
pruning capabilities of filters resulting from different mainte-
nance strategies. As in Section 6.2, each dataset that follows
was prepared by upserting 80 million records with different
actual update ratios (0% or 50%).

6.4.1 Secondary Index Query Performance

We first evaluated the overhead of the Validation strategy
on secondary index range queries. We again considered two
variations of the Validation strategy, depending on whether
merge repair was enabled, to evaluate the benefit of repairing
secondary indexes. Each query for a given selectivity was
repeated with different range predicates until the cache was
warmed and the average stable time is reported.

Non-Index-Only Query Performance. For non-index-
only queries, we enabled batching (with 16MB memory),
stateful B*-tree search, and blocked Bloom filter to optimize
the subsequent point lookups. For the Validation strategy,
we evaluated both Direct Validation (denoted as “direct”)
and Timestamp Validation (denoted as “ts”). The run-
ning time of non-index-only queries is shown in Figure 14.
In general, the Validation strategy has comparable perfor-
mance to the Eager strategy for non-index-only queries. For
the append-only workload (left side), the Direct Validation
method has similar performance to the Eager strategy, since
secondary indexes do not contain any obsolete entries. How-
ever, the Timestamp Validation method leads to some extra
overhead because of the validation step. The results are dif-
ferent for the update-heavy workload (right side). When
the secondary index is not repaired, the Direct Validation
method leads to high overhead for selective queries, as a
lot of 1/O is wasted searching for obsolete keys. However,
the extra overhead diminishes when the selectivity becomes
larger, such as 0.1 - 1%, since even searches for valid keys
must access almost all pages of the primary index. The
Timestamp Validation method is helpful for reducing wasted
1/0 by filtering out the obsolete keys using the primary key
index. With merge repair, most of the obsolete keys would
be removed, and thus both validation methods would have
comparable query performance to the Eager strategy.

Due to space limitations, we omitted one experiment with
a smaller cache memory (512MB) to evaluate the Times-
tamp Validation method when the primary key index can-
not be totally cached. We found that this has little impact
on the Timestamp Validation method since the primary key
index is much smaller than the primary index, resulting in
only a small amount of extra I/O during validation.
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Index-Only Query Performance. Figure 15 shows the
query time (log scale) for index-only queries. We omit the
Direct Validation method since it must fetch records for vali-
dation and thus has same performance as for non-index-only
queries. In general, the Validation strategy performs worse
(3x - 5x) than the Eager strategy because of its extra sort-
ing and validation steps. Even without obsolete entries (left
side), the validation step still leads to extra overhead. Still,
Timestamp Validation provides much better performance
than Direct Validation would by accessing the primary key
index. Finally, merge repair is helpful for index-only queries
by increasing repaired timestamps to prune more primary
key index components during validation, as shown in the
append-only case (left side), and by cleaning up obsolete
entries for the update-heavy case (right side).

6.4.2 Range Filter Query Performance

We next evaluated the effectiveness of the maintenance
strategies for filters. In particular, we used the range filter in
our evaluation. Recall that the range filter was built on the
creation_time attribute, which is a monotonically increasing
timestamp. The range of the creation_time attribute of all
tweet records in the experiment dataset spanned about 2
years. Each query in this experiment has a range predicate
on the creation_time attribute, and it is processed by scan-
ning the primary index with the component-level pruning
provided by the range filters. We evaluated two types of
queries, queries that access recent data (with creation_time
> T) and that access old data (with creation_time < T).
Each query was repeated 5 times with a clean cache for
each run, and the average query time is reported.

The query times with range filters are summarized in Fig-
ure 16. For the queries that access recent data, all the strate-
gies provide effective pruning capabilities. The Mutable-
bitmap strategy further improves scan performance since
LSM components are accessed one by one and the reconcil-
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Figure 16: Query Performance of Range Filters



iation step is no longer needed. In contrast, when access-
ing old data, the Validation strategy provides no pruning
capability since all newer components must be accessed to
ensure correctness. The Eager strategy is only effective for
the append-only case, but recall that its point lookups lead
to high cost during data ingestion. The Mutable-bitmap
strategy provides effective pruning capabilities via the use
of Mutable bitmaps under all settings, and does so with only
a small amount of overhead on data ingestion.

6.5 Index Repair Performance

We then evaluated the index repair performance of the
proposed Validation strategy (referred as secondary repair)
in detail, as well as the proposed Bloom filter optimization
(denoted as “bf”). For comparison, we also evaluated the
index repair method proposed by DELI [31] (referred as pri-
mary repair). Recall that DELI repairs secondary indexes
by merging or scanning primary index components to iden-
tify obsolete records, while our approach uses a primary key
index to avoid accessing full records.

In each of the following experiments, we upserted 100 mil-
lion tweet records with merge repair enabled. Since the two
methods trigger repair operations differently, the resulting
secondary indexes may have different amounts of obsolete
entries during data ingestion. To enable a fair comparison,
instead of measuring the overall ingestion throughput, we
measured the index repair performance directly as follows.
For every 10 million records ingested, we stopped the inges-
tion and triggered a full repair operation to bring all sec-
ondary indexes up-to-date. This provides the trend of index
repair performance as data accumulates. For our secondary
repair method, standalone repair was performed to exclude
the extra overhead due to merges.

Basic Repair Performance. We first evaluated the in-
dex repair performance under different update ratios (0%
and 50%). For primary repair [31], we evaluated two vari-
ations depending whether a full merge is performed as a
by-product of the repair operation. The index repair perfor-
mance over time is depicted in Figure 17, where each data
point represents the time to complete a repair operation.
For primary repair, a full merge leads to extra overhead for
append-only workloads, but improves subsequent repair per-
formance for update-heavy workloads. The secondary repair
method proposed here always outperforms the primary re-
pair methods because only it only accesses the primary key
index, significantly reducing disk I/O. The Bloom filter op-
timization further improves repair performance by reducing
the volume of primary keys to be sorted and validated.
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Figure 17: Repair Performance with Varying Up-
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Figure 18: Repair Impact of Secondary Indexes

Impact of Secondary Indexes. We next used 5 sec-
ondary indexes to evaluate the scalability of the index repair
methods. The update ratio was set to 10%. For the sec-
ondary repair method, each secondary index was repaired
in parallel using multi-threading. The index repair time is
depicted in Figure 18. Having more secondary indexes neg-
atively impacts the performance of both methods. For the
primary repair method, more anti-matter entries must be
inserted into more secondary indexes. For the secondary re-
pair method, more secondary index entries must be scanned
and sorted for validation. The result does show that the
proposed secondary index repair method is easily paralleliz-
able, since it only performs a small amount of I/O and most
operations are CPU-heavy. Furthermore, the Bloom filter
optimization reduces the negative impact of having more
secondary indexes, as it sorts fewer keys, significantly re-
ducing the I/O overhead during the sort step.

7. CONCLUSION

In this paper, we have presented techniques for efficient
data ingestion and query processing for LSM-based stor-
age systems. We described and evaluated a series of opti-
mizations for efficient point lookups, greatly improving the
range of applicability for LSM-based secondary indexes. We
further presented new and efficient strategies for maintain-
ing LSM-based auxiliary structures, including secondary in-
dexes and filters. The Validation strategy defers secondary
index maintenance to the background using a primary key
index, significantly improving ingestion performance by elim-
inating ingestion-time point lookups. This leads to a small
overhead for non-index-only queries, but a relatively high
overhead for index-only queries because of the extra vali-
dation step. The Mutable-bitmap strategy maximizes the
pruning capabilities of filters and improves ingestion perfor-
mance by only accessing the primary key index, instead of
full records, during data ingestion.

We plan to extend our work in several directions. First,
we hope to extend the Validation strategy to support more
efficient processing of index-only queries, further improv-
ing its applicability. Second, we plan extend the proposed
strategies to let queries drive the maintenance of auxiliary
structures and to develop auto-tuning techniques so that the
system could dynamically adopt the optimal maintenance
strategies for a given workload.

Acknowledgments. This work is supported by NSF awards
CNS-1305430, 11S-1447720, and 11S-1838248 along with in-
dustrial support from Amazon, Google, and Microsoft and
support from the Donald Bren Foundation (via a Bren Chair).



18]

[19]

[20]

REFERENCES

AsterixDB. https://asterixdb.apache.org/, 2018.
Cassandra. http://cassandra.apache.org/, 2018.
HBase. https://hbase.apache.org/, 2018.

LevelDB. http://leveldb.org/, 2018.

MyRocks. https://http://myrocks.io/, 2018.
Phoenix. https://phoenix.apache.org/, 2018.
RocksDB. http://rocksdb.org/, 2018.

M. Y. Ahmad and B. Kemme. Compaction
management in distributed key-value datastores.
PVLDB, 8(8):850-861, 2015.

S. Alsubaiee et al. AsterixDB: A scalable, open source
BDMS. PVLDB, 7(14):1905-1916, 2014.

S. Alsubaiee et al. Storage management in AsterixDB.
PVLDB, 7(10):841-852, 2014.

S. Alsubaiee et al. LSM-based storage and indexing;:
An old idea with timely benefits. In International
ACM Workshop on Managing and Mining Enriched
Geo-Spatial Data, pages 1-6, 2015.

J. L. Bentley and A. C.-C. Yao. An almost optimal
algorithm for unbounded searching. Information
Processing Letters, 5(3):82-87, 1976.

B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. CACM, 13(7):422-426, 1970.

F. Chang et al. Bigtable: A distributed storage system
for structured data. ACM TOCS, 26(2):4:1-4:26, 2008.
B. F. Cooper et al. Benchmarking cloud serving
systems with YCSB. In ACM SoCC, pages 143-154,
2010.

N. Dayan et al. Monkey: Optimal navigable key-value
store. In ACM SIGMOD, pages 79-94, 2017.

N. Dayan and S. Idreos. Dostoevsky: Better
space-time trade-offs for LSM-tree based key-value
stores via adaptive removal of superfluous merging. In
ACM SIGMOD, pages 505-520, 2018.

G. Golan-Gueta et al. Scaling concurrent
log-structured data stores. In FuroSys, pages
32:1-32:14, 2015.

G. Graefe. Modern B-tree techniques. Found. Trends
Databases, 3(4):203-402, 2011.

J. Jia. Supporting Interactive Analytics and
Visualization on Large Data. PhD thesis, Computer
Science Department, University of California, Irvine,
2017.

543

(21]

(22]

23]

[26]

27]

(28]

29]

(30]

(31]

(34]

(35]

L. Lu et al. WiscKey: Separating keys from values in
SSD-conscious storage. In USENIX Conference on
File and Storage Technologies, pages 133-148, 2016.
C. Luo and M. J. Carey. Efficient data ingestion and
query processing for LSM-based storage systems.
CoRR, abs/1808.08896, 2018.

C. Mohan and I. Narang. Algorithms for creating
indexes for very large tables without quiescing
updates. In ACM SIGMOD, pages 361-370, 1992.

P. O’Neil et al. The log-structured merge-tree
(LSM-tree). Acta Inf., 33(4):351-385, 1996.

F. Putze et al. Cache-, hash-, and space-efficient
Bloom filters. J. Ezp. Algorithmics, 14:4:4.4-4:4.18,
2010.

M. A. Qader et al. A comparative study of secondary
indexing techniques in LSM-based NoSQL databases.
In ACM SIGMOD, pages 551-566, 2018.

V. Raman et al. DB2 with BLU acceleration: So much
more than just a column store. PVLDB,
6(11):1080-1091, 2013.

R. Sears and R. Ramakrishnan. bLSM: A general
purpose log structured merge tree. In ACM SIGMOD,
pages 217228, 2012.

M. Seidemann and B. Seeger. ChronicleDB: A
high-performance event store. In EDBT, pages 144 —
155, 2017.

V. Srinivasan and M. J. Carey. Performance of on-line
index construction algorithms. In EDBT, pages
293-309, 1992.

Y. Tang et al. Deferred lightweight indexing for
log-structured key-value stores. In International
Symposium on Cluster, Cloud and Grid Computing,
pages 11-20, 2015.

S. Wang et al. Lightweight indexing of observational
data in log-structured storage. PVLDB, 7(7):529-540,
2014.

S. Wang et al. Fast and adaptive indexing of
multi-dimensional observational data. PVLDB,
9(14):1683-1694, 2016.

X. Wu et al. LSM-trie: an LSM-tree-based ultra-large
key-value store for small data. In USENIX Annual
Technical Conference, pages 71-82, 2015.

M. Ziauddin et al. Dimensions based data clustering
and zone maps. PVLDB, 10(12):1622-1633, 2017.


https://asterixdb.apache.org/
http://cassandra.apache.org/
https://hbase.apache.org/
http://leveldb.org/
https://http://myrocks.io/
https://phoenix.apache.org/
http://rocksdb.org/

	Introduction
	Background
	Log-Structured Merge Trees
	Apache AsterixDB
	Related Work

	LSM Storage Architecture
	Data Ingestion with the Eager Strategy
	Efficient Index-to-index Navigation

	Validation Strategy
	Overview
	Data Ingestion
	Query Processing
	Secondary Index Repair

	Mutable-Bitmap Strategy
	Overview
	Data Ingestion
	Concurrency Control for Flush/Merge

	Experimental Evaluation
	Experimental Setup
	Point Lookup Optimizations
	Ingestion Performance
	Insert Workload
	Upsert Workload

	Query Performance
	Secondary Index Query Performance
	Range Filter Query Performance

	Index Repair Performance

	Conclusion
	References

